$A Q A$

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature \qquad

GCSE

MATHEMATICS

Higher Tier
 Paper 2 Calculator

Thursday 6 June 2019
Morning
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a calculator
- mathematical instruments.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 .
- You may ask for more answer paper, graph paper and tracing paper.

For Examiner's Use	
Pages	Mark
$2-3$	
$4-5$	
$6-7$	
$8-9$	
$10-11$	
$12-13$	
$14-15$	
$16-17$	
$18-19$	
$20-21$	
$22-23$	
$24-25$	
TOTAL	

Advice

In all calculations, show clearly how you work out your answer.

1 Circle the point that lies on the curve $y=x^{2}-4 x+1$
Substitute in the points

$$
\begin{aligned}
& \quad(-1,4) \quad(-1,-4) \\
& 6=(-1)^{2}-4(1)+1 \\
& 6=1+4+1
\end{aligned}
$$

2 The height of a tree is 12 metres, correct to the nearest metre.
Circle the error interval.
Include the lower interval, not the upper
$11.5 \mathrm{~m} \leqslant$ height $<12.5 \mathrm{~m}$
$11.5 \mathrm{~m}<$ height $\leqslant 12.5 \mathrm{~m}$
$11.5 \mathrm{~m} \leqslant$ height $\leqslant 12.5 \mathrm{~m}$
$11.5 \mathrm{~m}<$ height $<12.5 \mathrm{~m}$
$3 \quad 2 a$ is five times bigger than b. Circle the ratio $\quad a: b$ use the fact $2 a=5 b$

$10: 1 \quad$| $1: 10$ |
| :--- |
| $2 \times 5=5 \times 2$ |

4

Which of these represents the shaded region?
Circle your answer.
$A \cup B$
$(A \cap B)^{\prime}$

Turn over for the next question

5 Using ruler and compasses, show the region inside the grid that is
less than 4 cm from A
and
nearer to B than to C.
Label the region R .
Show all your construction lines.
[3 marks]

6
Beth drives 200 miles in 4 hours.
She drives the first 18 miles at an average speed of 36 mph
Work out her average speed for the rest of the journey.

[3 marks]

Calculate the length of time for the first part.
$\frac{18}{36}=\frac{1}{2} \longrightarrow \underset{\text { (1) }}{30 \mathrm{mins}}$ (1)
$200-18=182$ distance of the remaining journey 182 miles in 3 . 5 hours time of the remaining $\frac{182}{3.5}=52 \mathrm{mph}$ journey

Answer \qquad mph

Turn over for the next question

7 The diagram shows rectangle $A B D E$ and right-angled triangle $A B C$.
$A C=17 \mathrm{~cm}$
$B C=8 \mathrm{~cm}$

Not drawn accurately

Calculate $A B$ using pythagoras
$17^{2}-8^{2}=289-64$ (1)

$$
=225 \quad \therefore A B=15 \text { (1) }
$$

Calculate the area
$15 \times(8+16)=360$
(1)
\qquad
\qquad
Answer $360 \mathrm{~cm}^{2}$
$8 \quad$ On the axes, sketch the curve $y=x^{3}-2^{2} y$-intercept
You must show the coordinates of the y-intercept.

Turn over for the next question

Injury time, \boldsymbol{t} (minutes)	Frequency
59	
	59
$2<t \leqslant 4$	158
$4<t \leqslant 6$	106
$6<t \leqslant 8$	45
$8<t \leqslant 10$	12

9 (a) Circle the two words that describe the data.
discrete
ungrouped

9 (b) Which class interval contains the median? You must show your working.

Calculate the running total (cumulative freq) $\frac{380}{2}=190$ (estimate)

Answer 2 \qquad $<t \leqslant$ \qquad
The table shows the injury time, t (minutes) played in 380 matches.
$9 \quad$ In a sport, injury time is added time played at the end of a match.
\qquad

9 (c) What percentage of the matches had more than 6 minutes of injury time?

$$
45+12=57
$$

\qquad

Answer \qquad \%

10
x is an integer.

$$
\begin{gathered}
-4<x \leqslant 2 \\
\text { and } \\
2 \leqslant x+3<9
\end{gathered}
$$

Work out all the possible values of x.

\qquad

* Compare the two intervals
* Show where the $x+3$ maps onto x. * Where they overlap are the values of x
\qquad
\qquad

11 Joe and Kyle share an amount of money in the ratio $7: n$ Joe gets 35% of the money.

Work out the value of n.
[2 marks]
Find the link between 7 and 35%
$35 \%=7$ parts $\quad 65 \%=n$ parts
5% = 1 part
$\therefore n=13$ parts
\qquad
\qquad

Answer
13
(1)

Choose the
12 A biased coin is thrown 250 times.
greatest number of
The relative frequency of Heads is worked out after every 50 throws.

Total number of throws	50	100	150	200	250
Relative frequency	0.4	0.29	0.4	0.32	0.3

Circle the best estimate of the probability of Heads.
0.3
0.32
0.342
0.4

13 The amounts spent on clothes by 40 boys and 40 girls in one month were recorded. The table shows information about the amounts spent by the boys.

Amount, $\boldsymbol{x}(\mathbf{£})$	Midpoint	Number of boys	
$0 \leqslant x<20$	10	22	220
$20 \leqslant x<40$	30	9	270
$40 \leqslant x<60$	50	6	300
$60 \leqslant x<80$	70	3	210
Big clue $\lambda>$	Total $=40$	1000	

The mean for the girls was $£ 35$
Estimate the mean for the girls as a percentage of the mean for the boys.

percentage
\qquad
\qquad
 \%
$14 \quad$ Ali and Mel are making 3-digit codes.
The digit 0 is not used.
Ali only uses odd digits. $9 \quad 7 \quad 5 \quad 3 \quad 1$
Mel only uses even digits. $8 \quad 6 \quad 4 \quad 2$
14 (a) Ali can make x more codes than Mel.
Assume that digits cannot be repeated.
Work out the value of x.
What digits can be used?
[3 marks]

For combinations we multiply (no repeats)
Ali \rightarrow lIst $\rightarrow 5$ and $\rightarrow 4$ 3 rd $\rightarrow 3$

$$
\begin{array}{rlll}
\text { so } 5 \times 4 \times 3 & =60 & \text { (1) } & \text { (1) } 60-24 \\
\hline \mathrm{mel} \rightarrow \text { st } \rightarrow 4 & 2 n d \rightarrow 3 & 3 r d \rightarrow 2 & =36
\end{array}
$$

$$
\text { so } 4 \times 3 \times 2=24
$$

Answer \qquad 36 (1)

14 (b) In fact, digits can be repeated.
What does this tell you about the actual value of x ?
Tick one box.
[1 mark]

$15 \quad$ Here is line L and the graph of $y=x-1$ The scales of the axes are not shown.

Look for
any clues on the graph. What is the scale?

Work out the equation of line L .

$$
\begin{gather*}
\text { Use } y=m x+c \quad y=m x+3 \\
\text { point }(2,0) \text { Lies on } L \\
\text { so } 0=2 m+3 \\
-3=2 m \\
-3=m \quad \therefore \quad \therefore \quad \text { [4 marks] } \\
\begin{array}{r}
2(1)
\end{array} \\
\text { Answer } \quad y=-3 / 2 x+3
\end{gather*}
$$

The area of $A C D$ is $80.5 \mathrm{~cm}^{2}$
Work out the area of $A B C$.
Give your answer to 3 significant figures.
Calculate $A C \quad 80 \cdot 5=\frac{A C \times 14}{2}$ (1)

$$
\begin{aligned}
161 & =A C \times 14 \\
A C & =11 \cdot 5 \text { (1) }
\end{aligned}
$$

Calculate Area $1 / 2 a b \sin C$
\qquad
\qquad 3 sigfigs

Not drawn accurately
$17 \quad m=\frac{p-2 b}{2}$
$p=68.3$ correct to 1 decimal place.
$b=8.7$ correct to 1 decimal place.
Work out the lower bound for m.
Calculate bounds $p=68.3 \rightarrow 68.25 \leqslant p<68.35$

$$
b=8.7 \rightarrow 8.65 \leqslant b<8.75
$$

Select the correct bounds to minimise m
$68.25-2 \times 8.75$ (1) 2

Answer $25 \cdot 375$ (1)
\qquad

Turn over for the next question

18 In a bag there are blue discs, green discs and white discs.
There are four times as many blue discs as green discs.
number of blue discs : number of white discs $=3: 5$
One disc is selected at random.
Work out the probability that the disc is either blue or white.
Express ratio of green to blue
\qquad
\qquad $1: 4$
$3: 5$$\quad$ finding multiples. 3:12:20 $\quad P$ (blue or white) $=\frac{32}{35}$
\qquad

Area of trapezium $\rightarrow(a+b) \times \frac{1}{2} h$
Find the height using trig

$=106.6157998$

Answer 106.62 (1)
Turn over for the next question

20 Expressions for consecutive triangular numbers are

$$
\frac{n(n+1)}{2} \text { and } \frac{(n+1)(n+2)}{2}
$$

Prove that the sum of two consecutive triangular numbers is always a square number.
Add the expressions together
\qquad

\qquad
\qquad
\qquad

21 A solid shape is made by joining two cones.
Each cone has the same radius.

$\begin{array}{ll}\text { One cone has } & \text { slant height }=2 \times \text { radius } \\ \text { The other cone has } & \text { slant height }=3 \times \text { radius }\end{array}$
The total surface area of the shape is $57.8 \pi \mathrm{~cm}^{2}$

Curved surface area of a cone $=\pi r l \quad$ where r is the radius and l is the slant height
Work out the radius.
[3 marks]
Use information above to write equations for each cone

$$
\begin{aligned}
\pi r L \quad \pi r 2 r+\pi r 3 r & =57.8 \pi \\
2 \pi r^{2}+3 \pi r^{2} & =57.8 \pi(1) \\
\hline \text { Divide by } \pi \quad 2 r^{2}+3 r^{2} & =57.8 \\
5 r^{2} & =57.8 \text { (1) } \\
r^{2} & =\frac{57.8}{5} \\
r^{2} & =11.56 \\
r & =3.4
\end{aligned}
$$

Answer 3.4 (1)
cm

$\pi r l$	
$\pi r 2 r+\pi r 3 r$	$=57.8 \pi$
$2 \pi r^{2}+3 \pi r^{2}$	$=57.8 \pi(1)$
Divide by $\pi \quad 2 r^{2}+3 r^{2}$	$=57.8$
$5 r^{2}$	$=57.8$ (1)
r^{2}	$=\frac{57.8}{5}$
r^{2}	$=11.56$
r	$=3.4$

Show that $(5 \sqrt{3}-\sqrt{12})^{2}$ simplifies to an integer.
Expand out the bracket

$-\sqrt{12} x-\sqrt{12}=12$
$5 \sqrt{3} \times-\sqrt{12}=-5 \sqrt{36}=-30$
$5 \sqrt{3} \times-\sqrt{12}=-30$
$23 \quad A$ and B are similar cuboids.
surface area of A : surface area of $B=16: 25$
Work out volume of A : volume of B Circle your answer.
$4: 5$
$16: 25$
64 : 125
256 : 625

24 Here is a sketch of the curve $y=x^{2}+4 x-12$

Work out the values of x for which

$$
x^{2}+4 x-12<0
$$

Give your answer as an inequality.
less than zero
Treat it like an equation

$$
\begin{aligned}
& x^{2}+4 x-12=0 \\
& (x+6)(x-2)=0 \\
& x=-6 \text { or } x=2
\end{aligned}
$$

Refer back to inequality $x>-6$ or $x<2$
(1) (1)

Answer $x>-6$ or $x<2$
\qquad

25 A sample of 50 eggs is taken from Farm A.
The table shows information about the masses of the eggs from Farm A.
Farm A

Mass, \boldsymbol{m} (grams)	Frequency
$53<m \leqslant 58$	8
$58<m \leqslant 63$	19
$63<m \leqslant 68$	15
$68<m \leqslant 73$	8

A sample of 50 eggs is taken from Farm B.
The histogram shows information about the masses of the eggs from Farm B.

For medium eggs, $\quad 53 \mathrm{~g}<$ mass $\leqslant 63 \mathrm{~g}$
The Farm A sample has more medium eggs than the Farm B sample.
Using the table and the histogram, estimate how many more.
You must show your working.

Use the table to calculate Sample A - 27 (1)
Use the histogram to calculate Sample B - 18 (1)
$27-18=9$ more
\qquad
\qquad

Answer \qquad

$$
(x+5)(x+2)(x+a) \equiv x^{3}+b x^{2}+c x-30
$$

Work out the values of the integers a, b and c.
Expand brackets and equate coefficients

$$
\begin{aligned}
& (x+5)(x+2)=x^{2}+7 x+10 \\
& \left(x^{2}+7 x+10\right)(x+a)=x^{3}+7 x^{2}+10 x+a x^{2}+7 a x+10 a
\end{aligned}
$$

Simplify $x^{3}+(7+a) x^{2}+(10+7 a) x+10 a$
Compare to expression $x^{3}+b x^{2}+c x-30$

$$
\begin{array}{rrrr}
10 a=-30 & 7+a=b & b=4 & 10+7 a=c \\
a=-3 & 7-3=b & & 10-21=c
\end{array}
$$

$$
\begin{aligned}
& a=-3 \\
& b=4 \\
& c=-11
\end{aligned}
$$

$27 \quad \mathrm{f}(\mathrm{x})=\frac{2 x}{5}-1$
Work out the value of

$$
f^{-1}(3)+f(-0.5)
$$

Calculate the inverse function

\qquad

Answer $\quad 8 \frac{4}{5}$ (1)

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE/ON THIS PAGE

 ANSWER IN THE SPACES PROVIDED
Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.
Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.
Copyright © 2019 AQA and its licensors. All rights reserved.

